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ABSTRACT 

This report  covers two topics, and is divided into two 

sections. 

Programing. 

second-order self-paced control system. Self-pacing 

implies ability to control velocity in forward a s  well a s  

la teral  direction; where the inputs a r e  given a s  values of 

two space coordinates and have no time dependence. 

The f i r s t  is a local variation of Bellman's Dynamic 

The second topic is the simulation of a 

Section I 
The local variation of the Dynamic Programing algorithm 

i s  described. 

in respect  to the computing equipment available in L966. 
major advantage i s  that the grid upon which a continuous 

system is simulated can be made severa l  o rde r s  of magnitude 

smaller  than when using Bellman's Dynamic Programing to 

simulate the same system. 

this method i s  a local method, and i s  subject to getting trapped 

i n  local minima. 

difficulty is described. 

Its disadvantages and advantages a r e  discussed 

The 

The major  disadvantage is that 

A procedure for overcoming this 

Section I1 
A second-order,  optimal, self-paced control system was 

simulated using the I. B. M 
Computation Center. 

7094 computer a t  the M. I. T. 

The methods of simulation used were: 

a) Bellman 's Dynamic Programing 

b) a modification of a )  that u s e s  the Dynamic 

Programing algorithm to consider points around 

a nominal, non-optimal t ra jectory instead of all  

points in the state space (a Local variation of the 

regular Dynamic Programing) and 



\c) a c lass ical  gradient analysis.  

Methods b) and c)  were used to achieve grea te r  resolution 

than was possible with method a ) .  

The method using Bellman's Dynamic Programing 

produced satisfactory resul ts ,  although the grid on which the 

self-paced system was simulated was very  coarse.  Method 

b) increased the grid resolution, and produced bet ter  (lower 

cost)  trajectories.  

could become trapped in  Local minima. The gradient method 

of analysis was found to be effective in analyzing only certain 

types of self-paced system. 

Method b)  had one weakness in that it 

- iv- 
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I. A LOCAL VARIATION TECHNIQUE 

OF BELLMAN'S DYNAMIC PROGRAMING 

A .  Introduction 

While working to simulate the self-paced systems,  

i t  became apparent that Bellman's Dynamic Programing would 

not be sufficient to simulate a continuous second o rde r  dynamic 

system of two degrees  of freedom. 

be used was so coarse  that the system simulated was unlike 

any familiar continuous system. 

to overcome the program of the gr id  s ize ,  as  lbcal variation of 

Bellm&n's Dynamic Programing was thought to be the best  

of the methods that were formulated. 

convinced the author that the method might have some 

app lica tion in other a rea s . 

The gr id  s ize  that had to 

When considering methods 

Further  investigation 

B. Description of the Basic Procedure 

The regular  Dynamic Programing considers a l l  points 

in a state space and guarantees a n  optimal solution in the space 

represented. The new method, on the other hand, considers 

only a se t  of t ra jector ies  arounda nominal, non-optimal 

trajectory. 

regular Dynamic Programing algorithm in this smal le r  volume 

of the cost  space. It then uses this best  t r a j e c t o r y a s  the new, 

non-optimal trajectory. 

program makes no change in the las t  f'non-optimaL'' trajectory.  

The program then terminates,  calling this last  t ra jectory 

optimal for the system. 

- 
It chooses the best  t ra jectory in this se t  using the 

This process  is repeated until the 

The following illustration should help c larify the 

procedure.  

space with the cost  axis coming out of the paper and the many 

other state variables axes collapsed into the plane of the 

paper. Constant cost (contour) Lines have been excluded 

The space in Figure 1 is considered as  a cos t  

- 1 -  



0 

X 

Figure I 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

X 

X 

-̂A 
x-/ x-n 
X-A Yo 

0 
X+A/’ 

1 I I 1 I I I 1 I i 

1 2  3 4  5 6  7 8  9 1 0  

Figure 2 

-2 -  



e 

I 

I .  

f rom the figure for the sake of clari ty.  

non-optimal trajectory i s  represented by a triangle a t  the 

(1, 1) point, if the gradient at  the (1,  1) point were to lie 

parallel  to the X = Y line in  the plane, the program would 

operate in the following manner. 

consider a s e t  of trajectories enclosed by the square. 

the previous ly defined gradient direction, the program will 

choose the upper right corner a s  the lowest cost point (designated 

by the X). 

around the X. 
centered about the X and be of the same size and  orientation 

a s  the previous square.)  

sys tem could consider would be the double X point. 

would continue and the next point to  be chosen would be the 0 point. 

If this point were a local minimum, the program would pick the 0 

point on the subsequent t r i a l  and then terminate. 

Assume the nominat, 

The program will 

Given 

Then it  will consider the se t  of points in  a square 

(The second square i s  not shown but i t  would be 

Now the lowest cost  point which the 

The program 

Figure 2 is  an example of what the process  would look 

like when altering the trajectory of a second order  system 

trying to minimize a function of both time and fuel and moving 

from s t a r t  to finish in two dimensions while a t  the same time 

trying to avoid an obstacle. 

i s  stopped a t  the finishing point. 

the trajectory marked by the XIS.  

trajectory (in several  iterations) over to the A trajectory and 

finally to the 0 trajectory,  which the program sett les on a s  

optimal. 

nominal non-optimal trajectory (the X ' s  ) i s  shown in Figure 3. 

This i s  only a representative configuration, but shows which 

points the program may consider. 

of one interaction is a l so  shown (the 0 ' s ) .  

The system s t a r t s  a t  r e s t  and 

The input to the program is 

The program moves this 

The grid that i s  formed around each point of a 

A sample output t ra jectory 

- 3- 
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C. Advantages and Disadvantages, and Procedures to Help 

Overcome the Disadvantages of the Method 

The f i r s t  problem with Local Dynamic Programing i s  

that the program can get caught on ve ry  shallow plateaus where 

i t  cannot determine a cost  difference between any of the points 

i t  i s  considering. Of course,  the precision to which the cost  

function i s  known depends mainly on the accuracy afforded by 

the available computing machines. 

procedure, and i t  will find only Local minima. 

major restriction to the usefulness of this method. 

an  operating procedure was developed which overcomes this 

objection in par t ,  

Second, this i s  a Local 

This i s  a 

However, 

To overcome the problem of local minima, a Dynamic 

Programing program was formulated to find a solution which 

i s  the best  in the space. 

values of each state variable that the investigator thinks may 

be a coordinate of a minimum in the cost  space. ) 

from the Dynamic Programing can then be used a s  the input 

to the f i r s t  se t  of iterations of the local Dynamic Programing 

routine. 

of i terations be about l/2 (or more) the size  of the gr id  s ize  

of the regular Dynamic Programing. The answer from this 

f i r s t  set  of iterations can then be used a s  the input to the 

next s e t  of iterations of the local Dynamic Programing, with 

a grid size one half a s  large a s  before. 

can continue until the answer is refined to any desired de- 

gree  of precision. The reduction in grid size of only one- 

half in each se t  of iterations i s  suggested because of the 

non-Linearities introduced by discretization of the continu- 

ous system. 

there i s  a grea te r  chance that the system may become trapped 

on a small  plateau or in a small  local ravine (possibly created 

by the discretization of the problem) when happens to be close 

to the true minimum. 

(This program should include a l l  

The answer 

It i s  suggested that the grid size of this f i r s t  s e t  

This procedure 

If the grid size i s  decreased ve ry  quickly, 

- 5 -  



There a r e  several  propert ies  which make this method 

bet ter  than other minimum finding techniques. The f i r s t  and 

most  important is that the complete procedure,  utilizing 

the regular Dynamic Programing will find the t rue minimum 

of a cost function to any degree of accuracy  des i red  i f  the cost  

function is  sufficiently smooth. (In dealing with functions 

that a r e  very  i r regular ,  this procedure will probably yield 

good results.  ) 

to calculate no derivatives. A third i s  that this method is 

absolutely convergent. 

(or more)  the procedure will find i t  (or  one of them. ) 

recommended program procedure a l so  allows for the inclusion 

of any  number of tes ts  for local minimum that the investigator 

may wish to include. 

- 

The second property is that this method has  

If the cost  function has  one minimum 

The 

D. Conclusions and Recommendations 

The procedure outlined in this section gives the 

investigator the opportunity to get solutions to continuous 

control problems to a lmost  any degree of accuracy that i s  

desired.  This i s ,  of course,  under the condition that the cost  

function i s  sufficiently smooth to allow the regular Dynamic 

Programing, on a successively finer grid,  to find a solution 

sufficiently close to the t rue minimum. 

Ideally, one would like a method that could find the 

absolute minimum of a cost  function that has  many Local minima 

and is not smooth o r  continuous. 

-6 -  



11. THE SIMULA TTON AND ANALYSIS OF 
SECOND-ORDER OPTIMAL SELF-PACED CONTROL SYSTEM 

A. Introduction 

For  the past  several  years,  r e sea rche r s  have been in- 

ves tigating human behavior using the techniques of conven- 

tional control theory, 

operator was adapted for two main reasons: 

This method of describing the human 

1) this procedure produces a fairly accurate  description 
of experimental results,  and 

2) the mathematical theory of these systems i s  reasonably 

well understood. 

This procedure assumes that people perform tasks in a forced- 

paced mode of behavior, For some tasks, this characterization 

is adequate; but for  most tasks that people perform,  they do so  

in a self-paced manner. 

Forced paced systems and self-paced systems can be 

differentiated a s  follows: 

I)  a forced-paced system has a s  independent variables 
the sequence of ideal states r, r as a function of 

t ime r ( t ) ,  and the instantaneous time derivatives of 

r ,  dr/dt, d r/dt , etc. 
2 2 

2)  a self-paced system has as an independent variable a 

sequence of ideal states r, but r ( t )  and the instantan- 

eous time derivatives of r,  dr/dt, d r/dt , e tc . ,  a r e  

dependent variables. 

of space coordinates, io e , ,  [.] defines a path in 

space. 

2 2 

Often r i s  given a s  a sequence 

- 7- 



The following example should help i l lustrate the defini- 

A car-dr iver  system can be thought of a s  a self-paced tion. 

system. 

winding ones, the dr iver  will go fas te r  on the straight s t re tches  

of road than on the winding parts.  

the probability of having an accident small ,  but he a l so  values 

his  time and does not want to travel too slowly. 
. there  i s  a trade-off between speed (or  time consumed in travel)  

and the probability of having an accident while traveLing. Were 

the speed control taken f rom the dr iver  and se t  to be constant 

throughout the tr ip,  the system would be forced-paced. 

the speed were se t  to be appropriate for  the winding sections 

of the road, the dr iver  would be bored, and probably angry 

a t  wasting s o  much time on the straight sections. 

were set to be appropriate for the straight par t s  of the road, 

the dr iver  probably could not negotiate the curves,  and most  

likely would meet with disaster ,  

On a road where there a r e  both straight sections and 

The dr iver  attempts to keep 

Consequently, 

If 

If the speed 

From experience, one real izes  that the speed a t  which 

one drives,  o r  a t  which one performs other activit ies,  i s  

dependent upon many factors. Because these factors a r e  dif- 

ficult to identify and the interactions among these factors a r e  

not well understood, it was considered best  to leave modeling 

a self-paced control system in t e rms  of these "real-world!' 

human factors until a f t e r  certain fundamental problems were 

bet ter  understood. For  the purpose of this report ,  the system 

was simplified until i t  could be reasonably simulated on an 

I.B.M. 7094 computer. (The reader  who i s  interested in 

the study of the self-paced car -dr iver  system should consult 

reference 1. ) 

The research  fo r  this repor t  was undertaken to provide 

a background o r  bas i s  for  modeling the human operator a s  a 

- 8 -  



self-paced system. A s  such, this report  i s  designed to give 

investigators some feel for the behavior of self-paced systems 

a s  well a s  algorithms and programs for  computing the t ra jec-  

tor ies  of optimal self-paced systems.  

B. The Self-Paced System Investigated 

1. Cost Functions 

Throughout the research one basic  self-paced system 

It was used exclusively so that data f rom model was used. 

one se t  of conditions could be easily compared to that of 

another. The cost  function used was 

where k is a power, and other t e r m s  a r e  defined in the 

Notation List. 

to one. 

o r  zero. 

analysis,  the cost  function was al tered somewhat. The a l te r -  

ations and reasons for them will be discussed in the section 

describing the gradient method of analysis.  

F o r  most  of the simulation, k was left equal 

Raising i ts  value tended to keep X and Y equal to one 

For the simulation using the gradient method of 

There were several  other models proposed for the simu- 

lation. They were generally of the form 

N 

*At (2) 
2 - *  

n=O, 1 

where k, b ,  and L a r e  constants. This cost  function is more  

realist ic than ( l ) ,  for i t  computes the absolute magnitudes of 

acceleration and velocity, penalizes f o r  friction in a n  

elementary so r t  of way (constant t imes the absolute velocity), 

and penalizes for being tfwithinll o r  "on11 a n  "obs tac Le. 

- 9- 



A cost function based on computation of the absolute magni- 

tude of velocity and acceleration w a s  not used. The absolute 

values of these quantities were used because of the difference 

in computation time (about two vs.  twenty o r  more  computation 

cycles). The computation of the friction factor ( e . g .  -k(X +Y ) 

was not used because of the required additional computation 

time. 

o r  less  was necessary because of the requirements of the 

M. I. T. computation center. 

2 2 1/2 

Keeping the program's  running time to fifteen minutes 

2. The Complete System 

The space in which the system was to be simulated was  

a flat, two dimensional region with an obstacle in the center.  

The system was to s ta r t  with X(0)  = Y ( 0 )  = 0 f rom a start ing 

point (the 1, 1 position in this investigation), mi s s  the obstacle, 

and stop a t  the finishing point (the 10, 10 point). 

is a pictorial representation of this space. 

0 0 

Figure 4 

This model, although not very realist ic when friction, 

high dimensionality, etc. must be considered, was thought 

t o  be adequate for this simulation. It represents  a second- 

o rde r  self-paced system that is concerned with getting to  a 
finishing point, not hitting an  obstacle (in this case ,  i t  

is probably better to say "stepping on" the obstacle ra ther  

than "hitting it"), and operating in an  optimal manner.  It 

is penalized for the total acceleration (acceleration and 

deceleration) it uses, for hitting the obstacle, and for not 

being a t  the selected stopping point. 

When dealing with a specific problem and with the new 

generation of computers appearing, i t  should be possible to 

simulate more complex systems so that more realist ic situ- 

ations can be analyzed. 

- 10- 
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C .  The Simulation 

1. Bellman's Dynamic Programing 

a .  Special AsDects of the P rogram 

When this research  was undertaken initially, i t  

was thought that the only simulation method that wouid be 
t needed was Bellman's dynamic programing . 

constructing the algorithm for the program,  i t  was discovered 

that the grid on which the model could be simulated would 

have to be very  coarse .  The grid size that was used was 

LOX units by LOY units by LO time units, with the minimal 

gr id  divisions being 1 unit in each direction. 

sions imply that the minimal velocity and acceleration units 

a l so  must be 1. At f i r s t  thought, i t  would seem that the 

number of grid points could be increased. The following 

argument,  however, will prove that there cannot be much 

improvement in the dynamic programing method a t  this t ime 

without the use of high capacity (and moderate speed) storage 

devices. 

While 

These divi- 

The I. B. M. 7094 computer a t  M. I. T. has  available 

to the user about 24,000 words (each of 36 bits)  of high speed 

storage ( 8 , 0 0 0  words of high speed storage a r e  reserved to 

maintain the system for the high speed processing of programs) .  

The total available information storage is about 850 ,000  bi ts .  

In o rde r  to compute the t ra jector ies  for a second o rde r  

system, the dynamic programing algorithm requires  that each 

point in the space be s tored a s  a function of each previous 

position, velocity, and t ime. 

s tore  ones position in one of 100 different possibilities, and 

since there a r e  LOX velocities, 1OY velocities, LOX positions, 

Since it takes seven bi ts  to 

'For the basic theory and further example of 
programing, the reader  should see reference 

the use of dynamic 
2. 

-12-  



' .  

1OY positions and LO time u n i t s ,  there must be a total of 

7 x 10 bits of available for information storage. This 
5 leaves 1 . 5  x 10 

program and all other variables. 

of the coarse  grid,  i t  was believed that some value could 

be obtained f rom the model using the dynamic programing 

method. 

5 

bits of 4, 300 words available to s tore  the 

In spite of the problem 

There is one fundamental difference between Bellman's 

dynamic programing algorithm and the dynamic programing 

algorithm used in this research. 

A par t  of Bellman's method computes a cost ,  and using 

this cost ,  computes the position to which the trajectory will 

go. If this computed position is close to an allowable posi- 
tion, the trajectory is required to go to that position, and 

the computed cost  is stored a s  the cost  to get to that position. 

Bellman's method introduces some erTor into the cost  

calculations. 

a position, go to it, and calculate the cost  for getting there 

by one route. 

of getting there by all other routes. 

trajectory to that position would be chosen and stored, 

the present context, this method appears  to be as  satisfactory 

a s  Bellman's estimated cost method as  it calculates the exact 

cost  of getting to a position. 

been encountered using this latter method. 

The method used in this research  was to pick 

This cost  would then be compared to the cost  

Then the lowest cost  

In 

A s  of now, no difficulties have 

The systems simulated by dynamic programing methods 

should not be thought of as  producing truly continuous 

t ra jector ies .  

the fundamental step Lengths a r e  1 unit in the X dimension, 

L unit in the Y dimension, and they are  taken every 1 unit 

of time. 

The simulations a r e  more  Like waLking, where 

The system path does go f rom point to point. 

- 1 3 -  



However, the system cannot exercise  any control except a t  

the discretly spaced grid points. Also i t  i s  penalized only 

for stepping on (or  within) the obstacle .  

b .  Simulation Results 

Some results of this simulation a r e  in Figure 5. 

show several  trajectories a r e  shown for the time cost  (TC) 

equal to 1. 

7 , 4  position. 

These 

The upper left corner  of the obstacle i s  a t  the 

In a l l  ca ses ,  the t ra jector ies  mis s  the obstacle. But 

one might question why they a r e  not smoother.  

three reasons for this phenomenon, and two a r e  interrelated.  

There a r e  

i. 

ii, 

iii 

the cost  is a l inear sum of accelerations 

wherein two acceleration units a t  one 

time cost  the same  a s  one acceleration 

unit a t  each of the two different t imes .  

in conjunction with i),  there  is no 

constraint on power, i. e .  acceleration 

pe r  unit t ime, for this system model. 

In rea l  systems,  there a r e  always 

power constraints.  If some power 

constraints were introduc.ed, the 

trajectories would be smoother. 

the grid is very  coarse .  

limited the acceleration, the t ra jectory 

will always have sharp  corners .  

No matter  how 

Another problem was that of severa l  optimal t ra jector ies  

Depending for a system operating with one penalty cr i ter ion.  

on the conditions of the system, the number of optimal 

trajectories found were 5, 6 ,  7, o r  m o r e .  After some 

investigation, i t  was concluded that the cause of these many 

optimal trajectories was the lack of a power constraint in the 

model. 

number of optimal t ra jector ies  for a system using one 

penalty cri terion would reduce to a single optimal solution. 

By including a n  appropriate power constraint ,  the 

- 14- 
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. 

In the process  of the investigation, i t  was noticed that 

i f  in the penalty cr i ter ion the absolute value of the acceleration 

were raised to a power grea te r  than one (as was done in the 

previous examples), the same resu l t  a s  the power (acceleration 

pe r  time) constraint would ensue.  This would l imit  the number 

of optimal trajectories.  

2. The Local Dynamic P r o g r a m  

Because of the extremely coa r se  grid with which the 

system had to be simulated using Bellman's dynamic programing, 

i t  was thought that some method should be devised which would 

simulate the self-paced system using a much finer grid. 

variation emphazed allows the system to be  simulated using 

almost as  fine a grid a s  is desired. 

500 divisions in each of X,  Y ,  and time spaces. 

The 

The present  limit is about 

When the local dynamic programing method was f i r s t  

formulated, a grid of 49 points was placed around each of the 

points on the nominal trajectory. 

t ime of a 7094 program to compute an optimal path for TC = 2 

and A t  = 1/2 was over  twelve minutes. 

to reduce the running time. 

points on a gr id ,  even though it was recognized that this a l te ra -  

tion would make the program more  apt to get caught in Local 

minima on the cost  surface. 

It was found that the running 

This prompted efforts 

A resultant program had only nine 

Because of the long running time of the program using 

49 points around each nominal point, only a few trajector ies  

were computed using this method. 

only slightly different start ing t ra jector ies  the program with 

only nine grid points around each nominal point converged 

on a cheaper path than the program without 49 grid point. 

A l l  the results mentioned subsequently will be  from the 

pzogram with the nine grid points around each nominal 

point. 

is included in Figure 6. 

It was found that with 

A n  illustration of one of the resu l t s  of this method 

The resul ts  of this simulation substantiated that if 

appropriate precautions were taken, the grid s ize  could be 

- 16- 



10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

X 
X 

xx 

X X 
X 

X 
X 

X 
X 

X 
X 

X 
x 

X 
x 

X 
X 

I I 1 1 I 1 I I I I 
2 3 4 5 6 7 8 9 10 1 

TC = 1, AT = 1/4, Cost  = 14 .25  

Figure 6 

- 17- 



, 

decreased. The major problem to be overcome for this system 

model was that when a short  trajectory (i. e. few steps) wa5 used 

a s  the initial nominal t ra jectory in the program, the program was 

trapped in a local minimum on the cost  surface and produced a 

non-optimaL path. Optimal t ra jector ies  (or  a t  least  much lower 

cost  trajectories) were successfully computed when long nominal 

trajectories were input to the program. 

At f i rs t  i t  was hoped that the problem of getting 

trapped in the Local minima a programing e r r o r  and not 

by the presence of minima in the cost space. The program, 

however, if operating in a flat cost  space, tended to lengthen 

the trajectory,  not shorten it.  

if one attempted to approach the minimum cost t ra jectory 

from the direction of a short  nominal trajectory,  the system 

would tend to get trapped in  a local minimum. 

cost  trajectory was approached from the direction of a long 

nominal trajectory,  the system would tend to find the true 

minimum cost (or  a t  least  a lower cost)  trajectory.  

Thus i t  was concluded that 

If the minimum 

D. The Gradient Method of Simulation 

The gradient method of analysis and simulation was 

attempted in  order  to t ry  to decrease the computing time 

required for the f i r s t  two methods and to give increased 

trajectory resolution. The theoretical basis  for this method 

and a general description of the mechanics of the method can 

be found in reference 7. 

When the gradient method was f i r s t  considered, i t  was 

thought that the system model could be simulated a s  i t  was 

defined in P a r t  11, equation I. 
realize that a gradient method would not work in a cost  

space that has  vertical  regions (i. e.  infinite gradients).  

The system was changed to make the ver t ical  regions have 

finite slopes. 

gradients in the region, and the program, it was thought, 

should have been able to find a minimum cost path. 

Little thought was needed to 

This eliminated any infinite o r  undefined 
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The method did not work, and the ahthor convinced 

himself that no gradient method could eve r  produce an  

optimal t ra jectory (excepting some kind of accident) in the 

cost  space defined in Part 11. 
gradient method would not be of much help in  finding optimal 

solutions of cost  functions of the type of concern in this report .  

This is because of the terminal conditions used with this 

particular cost  function. 

i f  self-paced systems were to be investigated, then a cost  

function which is suitable to the gradient analysis technique 

should be used. 

function i s  the t e rm penalizing the system for  requiring an  

extra step or  a n  extra  unit of time to satisfy the termina1 

conditions. 

It was concluded that the 

The conclusions were drawn that 

Of particular importance in the cost  

In the interest  of discovering i f  the gradient techniques 

could be used for simulating some self-paced systems,  a 

system model was developed which has  a tuo dimensional (X 

and Y) cone for the obstacle (the cone has its vertex pointing 

upward), and a four dimensional (X, Y,  VX, and VY) cone 

(with i t s  vertex pointing downward), for the stopping 

condition. 

and does not extend down beyond COST=O 

The obstacle cone has  a height of 50 cost  units, 

(The equations 
for  this cone are: COST = 50-k y+- X tY , and i f  COST i s  

negative, then COST is se t  equal to 0. ) 

stopping condition covers the entire space. 

The cone for the 

A program was written to simulate the model. It has  

LOO time divisions and extremely fine divisions in the X and 

Y space (significant to eight digits). 

this computation a r e  not included in the resul ts  section, 

but sketches of an input t ra jectory and the t ra jectory that 

the program had computed a t  the end of five minutes of 

computing time a r e  included in Figure 7. 

the program was terminated because the maximum running 

t ime had been exceeded; pr ior  to stopping, the program had 

not indicated that the output t ra jectory was optimal. ) 

The actual resul ts  of 

(Execution of 
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. t 

Sketch of the input t ra jectory (dashed Line) and 
the output trajectory (solid Line) of the Gradient 
Program. 
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t 0 

111. CONCLUSIONS AND RECOMMENDATIONS 

FOR FUTURE STUDY 

The rssu l t s  of the simulations using dynamic programing 

a r e  satisfactory. 

systems can be simulated, and that the resulting t ra jector ies  

will have relevance to the r ea l  t ra jector ies  i f  the system 

to be simulated i s  defined with certain rest r ic t ions.  

l a rger  and fas te r  computers a r e  available, o r  when much 

higher capacity, moderate speed storage and a n  abundance 

of computing time (on the order  of severa l  hours) pe r  r u n  

is pract ical ,  bet ter  estimates of the behavior of general 

optimally self-paced second (and higher) order  systems can 

be made. 

They indicate that optimal self-paced 

When 

At this t ime, for investigators attempting to optimize 

high order  continuous systems,  the procedure using the local 

gradient technique will probably produce satisfactory resul ts .  

The gradient method of analysis will not a id  in the 

computation of optimal trajectories for  the self-paced systems 

used in this research  (i. e 

conditions. Fo r  the type of systems described in the section 

dealing with the gradient method of analysis and many others,  

the gradient method will compute optimal t ra jector ies .  

with the s t r ic t ly  defined terminal 

Some of the resul ts  of this report  sh'ould be immediately 

useful to investigators attempting to compare human performance 

to optimal self-paced systems. 

be considered to be very much like the program task. 

Certain human tasks can 
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NOTATION LIST FOR CHAPTER I1 

t =  

T =  

N =  

x =  
Y =  
x =  
Y =  
vx = 
V Y  = 

x =  
Y =  
P C  = 

TC = 

the total cost  

an index of summation 

the minimal difference between two points on the time 

grid 

the running t ime. Generally, t = n xAt 

the time a t  which the end conditions a re  satisfied 

the total number of summations,  generally N = 

one of the dimensions of a two space region 

one of the dimensions of a two space region 

velocity in the X direction 

velocity in the Y direction 

X 

Y 
acceleration in the  X direction 

acceleration in the Y direction 

a cost  incurred whenever the system is within a 'Icost 

zone" o r  obstacle. 

a cost  incurred whenever the end conditions a r e  not 

satisfied, (i. e .  whenever the system is not stopped 

a t  the preselected stopping point. ) 

T b t  
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